On Ideals with Projective Bases
نویسندگان
چکیده
A theorem concerning some descriptive properties of σ-ideals and generalizing the main result of [1] is proved. Various applications of this theorem are also presented. 2000 Mathematics Subject Classification: 03E15, 28A05, 28B20.
منابع مشابه
Reading course report , on the book Ideals , Varieties and Algorithms
This report gives an overview of the main ideas in Chapter 9 of the studied book, about the dimension of a variety. After recalling some definitions and basic properties about projective varieties, homogeneous ideals and Gröbner bases, we will begin our study of the dimension of a variety with the observation of a geometric way to define the dimension of a variety defined by a monomial ideal. T...
متن کاملOn a family of projective toric varieties
By means of suitable sequences of graphs, in a previous paper, we have studied the reduced lexicographic Gröbner bases of a family of homogeneous toric ideals. In this paper, we deepen the analysis of those bases and derive some geometric properties of the corresponding projective toric varieties.
متن کاملOn Border Basis and Gröbner Basis Schemes
Hilbert schemes of zero-dimensional ideals in a polynomial ring can be covered with suitable affine open subschemes whose construction is achieved using border bases. Moreover, border bases have proved to be an excellent tool for describing zero-dimensional ideals when the coefficients are inexact. And in this situation they show a clear advantage with respect to Gröbner bases which, neverthele...
متن کاملMixed Ladder Determinantal Varieties from Two-sided Ladders
We study the family of ideals defined by mixed size minors of two-sided ladders of indeterminates. We compute their Gröbner bases with respect to a skewdiagonal monomial order, then we use them to compute the height of the ideals. We show that these ideals correspond to a family of irreducible projective varieties, that we call mixed ladder determinantal varieties. We show that these varieties ...
متن کاملFinitely Presented Modules over Semihereditary Rings
We prove that each almost local-global semihereditary ring R has the stacked bases property and is almost Bézout. More precisely, if M is a finitely presented module, its torsion part tM is a direct sum of cyclic modules where the family of annihilators is an ascending chain of invertible ideals. These ideals are invariants of M. Moreover M/tM is a projective module which is isomorphic to a dir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003